|
|
[ Pobierz całość w formacie PDF ]
the TEA-laser was a piece of technology supposed to serve a particular purpose, it was relatively straightforward for the researchers to know when the laser was working: it burned through concrete (Chapter 10). But how do researchers know when an experimental system is working? If experiments are supposed to answer genuinely open questions, then the experimenters, and the scientific community in general, cannot know what the answers are, and so do not have a simple yardstick to judge when the experimental system is working. The experimental system is working when it gives the right answer, but one knows the right answer only after becom- ing confident in the experimental system. Collins calls this the problem of experimenters regress. Experimenters regress can become vivid when there is a dispute. In the early 1970s Collins studied attempts by physicists to measure gravitational waves. The theory of general relativity predicts that there should be gravita- tional waves, but the agreement among physicists at the time was that they would be too small to measure using available equipment. One researcher, Joseph Weber of the University of Maryland, developed a large antenna to catch gravitational waves, and started finding some that were many times larger than expected. This started a small flurry of attempts to replicate or disprove Weber s results. Some came out in his favor, and some came out against him. Who was right? From Weber s point of view, people had attempted to replicate his results too quickly. He had spent years calibrating his antenna one experimenter said that Weber spends hours and hours of time per day per week per month, living with the apparatus (Collins 1991). People who could not detect anything with their quickly developed gravitational wave detectors simply 9781405187657_4_011.qxd 15/7/09 10:39 AM Page 125 Controversies 125 published their results. But were their detectors working well? On the other hand, Weber s results might have been artifacts of a device that was not measuring what he thought, or that was simply behaving erratically. His hours spent making his detector produce signals would be irrelevant if there were no waves to detect. When should one experiment count as a replication of another? Each of the gravitational wave detectors in this controversy was different from each of the others. This is not merely because it is essentially impossible to create complex novel devices that must be considered exact copies of each other. Scientists rarely want to copy somebody else s work as exactly as possible. Even in the uncommon instances when they are trying to replicate somebody else s experiment, novelty is a goal: they want to refine the tools, try different tools and different arrangements, and apply particular skills and knowledge that they have. So there are no strict replications. Even when one experiment is counted as replicating another by virtue of similarity, that may only serve to answer one set of worries. In principle, experiments counted as identical may also be thought to suffer from the same faults, and thus to produce the same poor results. As the problem of foundationalism (Box 2.2) suggests, with enough work it is in principle possible to undercut the support for any claim. Experi- menters regress is a theoretical problem for all experiments, though only sometimes becomes a real or visible issue. Most experimental results are uncon- troversial relative to the amount of work it would take to challenge them effectively, and if an experimental system is well established or well constructed, the results it produces will be difficult to dislodge. Interests and Rhetoric Controversy studies reveal the processes that lead to scientific knowledge and technological artifacts. In the midst of a controversy, participants often make claims about the stakes, strategies, weaknesses, and resources of their opponents. Therefore, researchers in STS have access to a wider array of information when they look at periods of active controversy than when they look at periods after controversies have been resolved. What leads the central protagonists of a controversy to take their posi- tions, particularly unorthodox positions? This question is only sometimes asked explicitly. Interestingly, not asking it amounts to assuming that the posi- tions adopted by key participants are of intrinsic rather than instrumental value, that those participants adopt the perspectives they do simply because 9781405187657_4_011.qxd 15/7/09 10:39 AM Page 126 126 Controversies they find them attractive or plausible. Why, for example, did Thomas Gold take on well-entrenched beliefs and claim that petroleum is the result of purely geophysical processes, not biological and geophysical processes combined? Because of the recognition he would gain, especially if he was right? Because of the economic importance of his hypothesis? Because he enjoyed challenging orthodoxy? If we ask the question explicitly, we may turn to either interest models or contextual explanations. For example, intellectual positions may cohere with social positions (e.g. MacKenzie 1978). Positions may also cohere with past investments in skills, resources, and claims: positions fit better or worse into overall programs of research. In a dispute over the origins, dates, and importance of the archaeological site Great Zimbabwe, various professional interests and established positions clashed with each other, mixed with familiar conflicts over land and race (Kuklick 1991). Looking at technological controversies, the interests at stake are more obvious: In one biotechnology patent dispute, for example, the sides were competing companies each of which had a strong financial stake in the outcome, stemming from investments in research and expertise (Cambrosio, Keating, and Mackenzie 1990). What tools do actors employ to further their positions? Scientists and engineers need to convince people of their claims, and therefore rhetorical tools are central. In science in particular, some rhetoric is easily available for study, because a main line of communication is the published paper, an attempt to convince a particular audience of some fact or facts. In both science and technology, less formal lines of communication, such as face-to-face
[ Pobierz całość w formacie PDF ] zanotowane.pldoc.pisz.plpdf.pisz.plkwiatpolny.htw.pl
|
|
Cytat |
Dobre pomysły nie mają przeszłości, mają tylko przyszłość. Robert Mallet De minimis - o najmniejszych rzeczach. Dobroć jest ważniejsza niż mądrość, a uznanie tej prawdy to pierwszy krok do mądrości. Theodore Isaac Rubin Dobro to tylko to, co szlachetne, zło to tylko to, co haniebne. Dla człowieka nie tylko świat otaczający jest zagadką; jest on nią sam dla siebie. I z obu tajemnic bardziej dręczącą wydaje się ta druga. Antoni Kępiński (1918-1972)
|
|